56 research outputs found

    Modeling Vortex Swarming In Daphnia

    Full text link
    Based on experimental observations in \textit{Daphnia}, we introduce an agent-based model for the motion of single and swarms of animals. Each agent is described by a stochastic equation that also considers the conditions for active biological motion. An environmental potential further reflects local conditions for \textit{Daphnia}, such as attraction to light sources. This model is sufficient to describe the observed cycling behavior of single \textit{Daphnia}. To simulate vortex swarming of many \textit{Daphnia}, i.e. the collective rotation of the swarm in one direction, we extend the model by considering avoidance of collisions. Two different ansatzes to model such a behavior are developed and compared. By means of computer simulations of a multi-agent system we show that local avoidance - as a special form of asymmetric repulsion between animals - leads to the emergence of a vortex swarm. The transition from uncorrelated rotation of single agents to the vortex swarming as a function of the swarm size is investigated. Eventually, some evidence of avoidance behavior in \textit{Daphnia} is provided by comparing experimental and simulation results for two animals.Comment: 24 pages including 11 multi-part figs. Major revisions compared to version 1, new results on transition from uncorrelated rotation to vortex swarming. Extended discussion. For related publications see http://www.sg.ethz.ch/people/scfrank/Publication

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Formação de cardumes por Astyanax altiparanae (Teleostei: Characidae) no Rio Congonhas, Paraná, Brasil Schooling behavior of Astyanax altiparanae (Teleostei: Characidae) in the Congonhas River, Paraná, Brazil

    No full text
    Foi observado o comportamento de formação de cardumes de Astyanax altiparanae Garutti & Britski, 2000 no subafluente do médio rio Paranapanema, durante o período de janeiro de 1997 a fevereiro de 1998. Foi constatado que essa espécie forma basicamente dois tipos de cardumes: os maiores (aproximadamente 50 indivíduos) formados pelos menores espécimes e localizando-se à margem, entre a vegetação aquática; enquanto os menores cardumes (cerca de 15 indivíduos), formados por espécimes maiores, localizam-se, preferencialmente, em áreas mais profundas. Foram evidenciadas algumas variações comportamentais (organização e localização) entre esses dois grupos dependendo do tipo de atividade realizada como, freqüência de deslocamento e forrageamento. O comportamento observado desses cardumes ante ao sinal de ameaça reforça a idéia de que a formação de cardumes é, também, uma tática anti-predatória.<br>The schooling behavior of Astyanax altiparanae Garutti & Britski, 2000, was observed in a subtributary of the mid-Paranapanema River from January 1998 to February 1999. This species was shown to form two types of school: large schools, with approximately 50 individuals, were formed by smaller specimens located near the margin, around aquatic vegetation; and small schools (around 15 individuals), composed of larger specimens living preferentially in areas of deep water. Some behavioral variations in organization and localization were observed between these two groups, depending on the type of conducted activity, such as displacement frequency and foraging. The observed behavior of these schools when under threat underscores the idea that schooling is also an antipredation tactic
    corecore